
CSIS441 Machine Learning and Computational Modeling
Dr. J. Walker Orr

Bot or not: modeling HTTP traffic to classify humans
and bots
Trey Moen1*

Abstract
In today’s Internet-connected world, there is an immense amount of internet traffic. It may seem like most
traffic is composed of normal people on social media and e-commerce platforms, there is a large amount
of web traffic coming from robots — programs written in languages like Python and Node.JS that scrape
valuable data like user info and product availability. The ethics of such practices aside, these programs put
additional loadonto company infrastructure, forcingbusinesses to scale up their hosting capabilities, costing
them additional funds to simply ensure their customers can access their resources and websites quickly.
Machine learning can help identify threat actors before accessing certain resources, allowing businesses to
classify bot traffic and prevent access. In this paper, I explore a method on how to identify bot traffic based
on overall session and IP behavior, and implement a basic interface to block bots in a Flask web server.
Keywords
Bot detection — Python — Machine Learning
1Department of Computer Science, George Fox University, Newberg, Oregon
*Corresponding author: tmoen18@georgefox.edu

Contents
1 Introduction 1
2 Background 1
3 Framework 1
4 Evaluation 2
4.1 Feature selection . 2
4.2 Feature significance . 3
4.3 Classifier . 3
4.4 Results . 3
4.5 Shortcomings and considerations 3
5 Conclusion and reflections 4

References 4

1. Introduction
I knew I wanted to attempt a bot detector when
we were assigned this project. I used to write web
scrapers almost daily, looking at content from vari-
ous web pages and trying to evade the types of pro-
tection mechanisms I attempted at creating in this
paper. My goal was to use this prior knowledge and
the help of other researchers to help build a feature
set that I knew would help categorize humans ver-
sus bots.

2. Background
This project primarily revolved around creating a
loosely-coupledadapter for aFlaskwebapplication.
This would enable a new user to simply add a few
lines of code to their Flask app and get protection
from bots. The finalmodel is saved locally so that it
is easy to load into a new UWSGI thread (the back-
bone of Flask’s web server).

3. Framework
Iwentwith a simple framework to test outmyHTTP
bot protection

system. I created aPython library that exposes a
few functions to the enduser that hook into existing
Flask routes and add a boolean as towhether the re-
quest ought to be blocked or not. The end goal was
to make it as easy to integrate into a Flask applica-
tion as adding the following to a Flask project:
1 # Add request collector
2 @app.before_request(request_handler)
3 # Add response collector
4 @app.after_request(response_handler)
5

6 # Add to protect endpoint
7 @protected_endpoint

Bot or not: modeling HTTP traffic to classify humans and bots — 2/4

8 @app.route(’/’)
9 def home(blocked: bool):
10 if blocked:
11 # Handle bot
12 else:
13 # Handle human

This interface makes it incredibly simple for a
developer (or client) to integrate a bot prevention
mechanism.

Diagram of framework

Above is a diagram of the entire application. It
consists of a simple Flask web server, a Collector
component, and a Classifier component. For each
request the application receives, it logs some statis-
tics about the request. Next, the Classifier takes
what we currently know about a given HTTP ses-
sion (identified by a Session ID cookie) and makes
a prediction about whether the session is a bot or
a human. Finally, when we are about to send a
response back, the Collector analyzesthe response
and records information and records information
about the response. The “blocked” attribute is
passed to the Flask route handler so the program-
mer can use it when handling the response, i.e. if
the Classifier wants to block this request, then we
can provide old, stale data or even a block HTML
page.

Sample app homepage

4. Evaluation
4.1 Feature selection
Selecting the right features to delineate humans
andbots is a difficult process. The feature set I gath-
eredwas heavily influenced by several research pa-
pers [1] [2] [3]:

• Number of requests total
• Number of bytes requested
• Number of GET requests
• Number of HEAD requests
• Number of POST requests
• Number of HTTP 3xx Codes (cached)
• Number of HTTP 4xx Codes (client error)
• Maximum number of requests for one page
• Average number of requests per page
• Standard deviation of page depth
• Maximum consecutive requests for one page
• Percent consecutive requests for one page out of all
• Overall session time
• Browse speed (num requests / session time)
• Average time between requests
• Standard deviation of time between requests
• Percent of requests with the Referer header
• Percent of requests without the Referer header

There were a number of features I added from
prior experience and through attempting to imple-
ment thepipeline thatprovide signals as towhether
the client is a human or bot:

• IP
• Session ID (cookie)
• Number of sessions on IP
• Number of unique User Agents
• Number of unique Referer headers
• Number of unique HTTP header hashes

A large number of sessions from one IP likely
tells us that there is a cluster of bots running on
a given IP. However, it’s not an entirely important
metric because of cases like large organizations
that many clients will connect through, so this fea-
ture should be utilized with caution. However, for a
given session, if the number of unique user agents
or HTTP Referer headers change, then one can pre-
sume the session is utilizing header randomization
attacks. Another metric I used is the HTTP header
“hash.” This technique is another way to identify if
a client is randomizing theHTTPheaders it is send-
ing to the server, and an anomalous value here is
also a prime signal as to whether the client is a bot.

Bot or not: modeling HTTP traffic to classify humans and bots — 3/4

There were a number of features I wanted to
add into the model that give greater clarity into
the types of entities that attempt to connect to the
server, but these would require additional layers of
complexity than what this final project allowed for.
These include:

• JA3 hash [4]

• “Picasso” fingerprint [5]

The JA3 hash is a fingerprint of the TLS Client-
Hello packet. It records a number of attributes like
the SSL/TLS version and supported cipher suites.
This info is computed and MD5 hashed to create
a “fingerprint” of the client making the request.
JA3 hashes can be tied to specific browsers like
Tor, Google Chrome, and Firefox, as well as pro-
gramming language request libraries like Python
Requests and Node.js fetch. Finding a number of
varying JA3hashes fromaspecific sessionor IPwill
flag an IP or session as a bot (or, finding a JA3 hash
associated with a specific blocklist of known scrap-
ing programs).

The “Picasso” fingerprint is a method of client-
side fingerprinting that relies on the HTML5 Can-
vas. It relies on the stable yet random noise
a browser implementation gives off in order to
classify it amongst many different devices and
browsers. This is one way to identify if one session
(or many sessions from an IP) is being used across
many different browsers (e.g. a session initiated in
Chrome is later copied to headless Chrome). This
would help identify bots manipulating and transi-
tioning between different browsers.

These two additionalmetrics could severely nar-
row down the type of clients that are obviously bots.

4.2 Feature significance

Feature significance

According tomy small dataset, Feature 13 (max-
imumnumber of consecutive requests to one page)
held the greatest importance out of all features

recorded. From my past experience, this makes a
lot of sense — many web scrapers will repeatedly
scrape the same web page over and over, trying to
get the latest information from a given resource.

4.3 Classifier
Because this problem lends itself to classification
by segmenting chunks of data based on the fea-
ture’s value, a Decision Tree Classifier makes the
most sense to start with. I tried a Random For-
est Classifier, utilizing a cluster of Decision Trees,
trained on separate parts of the data set, and voting
on the final classification. As you will see later, this
approach did verywell, and I did not need to try out
other classifiers.

4.4 Results

Final result: 100% accuracy

After running the training and testing data
through the classifier, it classified from 96.9% to
100% depending on the seed — a pretty good out-
come!

4.5 Shortcomings and considerations
As I noted on my collector webpage, I could not
find a large corpus of HTTP request logs that met
my needs, so I needed to collect and generate my
own human and bot traffic. I created a sample
implementation of my collector onto a Flask web
server and had my classmates interact with the
website as they normally would browse the Inter-
net, and collected their behavioral patterns that
helped influencemymodel’s outcome. In this “pro-
duction” server, I could easily classify all traffic as
“human” because I knew only my classmates ac-
cessed this page. As well, I wrote a “quick-and-
dirty” Python requests web scraper employing
various techniques like randomdelays, header ran-
domization, and varying navigation patterns, and
recorded the request history locally. I could label
all this local traffic as “bot.” Through this, I had my
corpus of model training data.

Bot or not: modeling HTTP traffic to classify humans and bots — 4/4

Because of this, however, my model was very
skewed toward my classmates’ browsing behavior
as well as my one robot web scraper and its ran-
domization techniques. To make this model espe-
cially robust, I need hundreds of thousands or mil-
lions of requests to summarize data on, in addition
to more intelligent strategies on session isolation
(e.g. make a session expire after several hours).

5. Conclusion and reflections
I enjoyed writing this program and technology
stack. It hasbeenadreamofmine to create this pro-
gram for some time, andwhat better reason to start
it than use it as assigned coursework! I learned an
immense amount about building Flask “plugins,”
collectingmachine learning training data “at scale”
(e.g. creating a solution that could scale), and do-
ing research on techniques that others have tried
and attempting to synthesizemany techniques into
one solution. I wish I had more time to continue
developing this stack as well as find another large
corpus of HTTP requests that would fit my needs;
I hope to continue this past the end of this course.
Thankyou to allwhohelpedgeneratehumanbehav-
ior onmywebsite, I couldn’t have formulated these
results without you!

References
[1] C. Iliou, T. Kostoulas, T. Tsikrika, V. Katos,

S. Vrochidis, and Y. Kompatsiaris, “Towards a
framework for detecting advanced web bots,” in
Proceedings of the 14th International Conference on
Availability, Reliability and Security, 2019, pp. 1–
10.

[2] G. Suchacka, “Analysis of aggregated bot and hu-
man traffic on e-commerce site,” in 2014 Feder-
ated Conference on Computer Science and Informa-
tion Systems. IEEE, 2014, pp. 1123–1130.

[3] G. Suchacka and I. Motyka, “Efficiency analy-
sis of resource request patterns in classification
of web robots and humans.” in ECMS, 2018, pp.
475–481.

[4] J. Althouse, J. Atkinson, and J. Atkins, “Ja3 -
a method for profiling ssl/tls clients,” https://
github.com/salesforce/ja3, 2017.

[5] E. Bursztein, A. Malyshey, T. Pietraszek, and
K. Thomas, “Picasso: Lightweight device class
fingerprinting for web clients,” in Workshop on
Security and Privacy in Smartphones andMobile De-
vices, 2016.

https://github.com/salesforce/ja3
https://github.com/salesforce/ja3

	Introduction
	Background
	Framework
	Evaluation
	Feature selection
	Feature significance
	Classifier
	Results
	Shortcomings and considerations

	Conclusion and reflections
	References

